
RISC-V Trusted Execution State
Extension

Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Mark Hill (mark.hill@huawei.com)

Jan 11, 2021

CONTENTS:

1 Rationale and Scope 1

2 Specification 3
2.1 Leaving trusted execution without changing privilege level . 5
2.2 Entering trusted execution without changing privilege level . 6
2.3 General purpose register management . 8
2.4 Exceptions . 10
2.5 Trusted Interrupts . 11
2.6 Untrusted Interrupts . 11
2.7 Core Level Interrupt Controller (CLIC) support . 14
2.8 Summary of State Transitions . 16
2.9 Trap Vector Locking . 16
2.10 Debug . 18

3 Security Assessment 21

4 Use cases/models 23
4.1 Lightweight secure function calls . 23
4.2 Calling untrusted/insecure code . 25
4.3 Trusted OS with untrusted (sandboxed) and trusted tasks . 26
4.4 Untrusted OS with secure functions and tasks . 26

5 ISA Summary and Encodings 29
5.1 Instruction Summary . 29
5.2 CSR Summary . 29

6 Trusted Execution State Sub-Extensions 31
6.1 Extension ztesmultit: Multi-T support . 31

i

ii

CHAPTER

ONE

RATIONALE AND SCOPE

Although Trusted Execution Environments (TEEs) can be built using the standard RISC-V Physical Memory
Protection (PMP) scheme with machine mode as the trusted state, this approach has some limitations:

• Machine mode must manage the lower privilege tasks, all exceptions/interrupts and device drivers as well as
managing secret data and providing trusted services. This violates the security Principle of Least Privilege,
for example, key management code does not need access to OS state and the OS should not have direct ac-
cess to secret state. Also, as the size of the trusted code increases the risk of security loopholes increases and
there is a larger code base from which the gadgets used in Return/Jump Oriented Programming (ROP/JOP)
attacks can be constructed. It also becomes less likely formal security proofs can be applied. In the Security
IC Platform Protection Profile (PP0084) spec this is the threat mode defined as T-AbuseFunc.

• Transition between insecure and secure domains is inevitably heavyweight as it must be built on a syscall
infrastructure based on the ecall instruction.

In addition, because in the standard PMP user executable code can always be run in m-mode it is not possible to
enforce checks that m-mode only runs trusted/signed code. This makes the TEE susceptible to privilege escalation
attacks where a software or physical attack can cause a flip to a higher privilege level and then run the attacker’s
code at that higher privilege level. This issue can be addressed by implementation and appropriate configuration
of an enhanced PMP (ePMP) extension (which is both orthogonal and complementary to this extension) but is
also fundamentally addressed in this extension by always forbidding execution in trusted state of code which is
not explicitly tagged as trusted.

The purpose of this optional extension is to address these issues and provide stronger protection and quicker
handling of secret data.

This extension does not provide protection against denial of service attacks by untrusted machine mode on the
Trusted Execution State; any actor with machine level privileges has many ways to crash the core. To resolve this
issue either the trustworthiness of the code running in Untrusted Execution needs to be raised, for example, using
a software TEE, or the secure world must reside in a dedicated hardware enclave.

An additional aim is to minimize the additional state and mechanisms added to the architecture. Simpler solutions
are more reliable, less likely to be prone to physical/software attacks, more aligned to the RISC-V philosophy and
thus more likely to be adopted by the RISC-V community.

This extension is primarily aimed at protecting low to medium value assets, it is still anticipated that high value
assets will be protected by a physically separate security domain.

1

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

2 Chapter 1. Rationale and Scope

CHAPTER

TWO

SPECIFICATION

A new execution state is defined, Trusted Execution State (TES), which is orthogonal to the privilege levels
implemented in the core:

User (u)

Machine (m)

User (u)

Machine (m)

Untrusted Execution State
(TES=0)

Trusted Execution State
(TES=1)

jmp+ret

call+ret

call+ret

jmp+ret

irq
/tra

p
+
m
re
t

irq
/tra

p
+
m
re
t

irq/trap+
m
ret

Debug (d)Debug (d)

Fig. 1: Trusted execution states and privilege levels

When the core is operating in Trusted Execution State (TES=1) it has access to a set of trusted control registers
and memory regions that can only be accessed when in this state; access from Untrusted Execution State (TES=0)
is never permitted, even if running at a higher privilege level. For example, untrusted machine mode is never
permitted to access trusted user state. Access to untrusted data from Trusted Execution State is permitted provided
that the permission checks defined by the Base ISA are met. For example, trusted user mode only has the same
access privileges to an untrusted data region as untrusted user mode. However, when in Trusted Execution State
it is never permitted to execute code from untrusted regions of the address space because of the security risks of
sharing code between untrusted and trusted execution.

The following specification describes how these rules are enforced from reset into a trusted state through all
transitions from, and then back to, trusted state either at the same privilege level (horizontal transitions) or, via
interrupts and exception handling, with a change in privilege level.

At reset Trusted Execution State is enabled (TES=1) and all instructions are fetched from a trusted memory region.
Trusted memory regions are identified by a bit (T) in a new custom CSR array, pmptectl, which contains an 8-bit
record per PMP entry (XLEN/8 entries in every XLEN-bit CSR). In the base specification only bit 0 of each record
is defined, the remaining bits are read-only-zero (ROZ). Thus the T-bit for entry n is located at pmptectlX[Y]
where X=(8n/XLEN) and Y=(8n % XLEN).

Because trusted execution must start in a trusted memory region, reset hardware must initialize the PMP so that
the reset PC matches an entry in the PMP with the T bit set. Additional PMP entries can then be programmed to
create other trusted memory regions by setting the T-bit associated with that entry. Constraining the intial boot to

3

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

ROZ T

7 1 0

Fig. 2: Configuration record for a pmptectl entry.

a limited region of the address space also gives the additional security benefit of reducing the risk of an attack on
the reset vector.

The T-bits can only be set or cleared when the processor is running with TES=1.

When TES=0 and the pmptectl.T for a PMP entry is set the fields pmpcfg.A, pmpaddr are pmptectl.
T are m-mode read-only (MRO), all other fields, including any custom PMP fields are m-mode read-only zero
(MROZ).

Note: Rationale: Granting read-only access when TES=0 allows untrusted m-mode to discover the PMP entries
and memory regions that have been reserved for trusted use, hereby improving software maintainability. Other
fields are hidden to make it harder for untrusted code to deduce the usage of the trusted regions. Having a shared
PMP for trusted and untrusted code gives greater flexibility as it allows software architects to control the allocation
of entries between trusted and untrusted based on the use model.

When TES=0 and the PMP entry’s pmptectl.T=0: pmpcfg, pmpaddr plus any other custom fields may be
read/written by code executing in m-mode (in accordance with the PMP lock behavior defined by the Base ISA).
However, the pmptectl array can never be modified when TES=0.

When TES=1 all code executed must be from a trusted memory region, although it is permitted to make both
trusted and untrusted data accesses (provided that the RW permission bits in the PMP configuration permit it).
When TES=0 all RWX permissions are revoked for trusted regions and attempts to access them result in PMP
faults.

Note: Nomenclature: This specification uses the pseudo function pmp_lookup(addr) to represent the lookup
of address, addr, in the PMP. The function returns a structure containing all the CSR state associated with that
PMP entry. For example, pmp_lookup(pc).pmptectl.T, refers to the T field of the pmptectl record
associated with the PMP entry which matches the program counter, pc.

Throughout this specification the term privilege level refers to the standard RISC-V privilege levels which, in the
base extension, are restricted to machine (m) and user (u) mode.

Note: Implementation: The architecture expects an implementation to signal the trust status of each memory
transaction on the bus. The recommendation is that the core signals the trust status of the requesting instruction,
pmp_lookup(pc).pmptectl.T, rather than that of the memory access, pmp_lookup(data_addr).
pmptectl.T (for a load/store operation on data_addr). This allows peripherals to implement differ-
ent behaviour for trusted and untrusted accesses to the same location, for example, to gate access to a
trusted configuration register in a peripheral. To enhance security further implementations may also report
pmp_lookup(data_addr).pmptectl.T and the privilege level at which the requesting instruction was
executed. Further details of this signaling are implementation/bus protocol specific and outside the scope of this
specification.

The PMP lookup scheme differs slightly from that in the Base ISA as matches for trusted regions are prioritised
over untrusted ones. Searches for a trusted (T=1) and an untrusted (T=0) match proceed in parallel with entries
considered disabled (pmpcfg.A=OFF) if pmptectl.T does not match T. If a trusted match is found then it is
a trusted region, if not, and there is an untrusted match, is an untrusted region. Regardless of the current privilege
or TES setting, if no match is found a PMP fault is generated.

If entry n has pmpcfg.A=TOR and pmptectl.T=1 then entry n-1 is read-only when running in Untrusted

4 Chapter 2. Specification

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Execution State (TES=0). This prevents untrusted code modifying the base address of a trusted region specified
using the Bottom/Top of Range (BOR/TOR) scheme. This is similar to the Base ISA locking of entry n-1 when
entry n has pmpcfg.A=TOR and pmpcfg.L.

Note: Rationale: This scheme makes it impossible for any change to an untrusted entry to remove the trusted
status of a region, it also has the property that PMP entries can be maintained in physical address order giving
maximum opportunity to use a PMP entry as both a BOR for the next entry and a TOR for the current entry,
helping to make efficient use of a limited resource.

Note: Implementation: For implementations of RISC-V which provide cache maintenance operations (CMOs) it
must be guaranteed that any destructive CMOs that can be performed when in Untrusted Execution State (TES=0)
cannot cause corruption of trusted state. As CMOs for RISC-V have not yet been standardised a precise definition
of behavior cannot be given. Suggested behavior is all destructive/invalidating CMOs that operate on:

• Addresses when TES=0, should generate a PMP fault if pmptectl.T is set.

• Whole cache, way or set index, must be restricted to Trusted Execution State.

When caches are implemented, any code handing trusted regions of memory back for untrusted use should scrub
the memory and then use CMOs to flush the caches so that no trusted data remains. This ensures that any untrusted
invalidation cannot undo the scrubbing and reveal trusted data.

If implementing writeback caches in systems where the trust status of a transaction is reported on the bus (in
order to support trust aware IOPMP/IOMMUS for example) a mechanism is needed to ensure the correct trust
status for dirty lines is reported when they are evicted. If the above guidelines are enforced then this can either be
achieved by looking up the address of the line in the PMP or by storing the T-bit along side the other cache line
attributes. Further details of this signaling are implementation/bus protocol specific and outside the scope of this
specification.

2.1 Leaving trusted execution without changing privilege level

Transitioning from trusted to untrusted execution is either:

• By a jump instruction (jal, jalr, c.j, c.jr) to a target PC in an untrusted PMP region
(pmp_lookup(targetpc).pmptectl.T==0) with a destination/link register which is x0/zero or
not present in the encoding. This includes the pseudo ops j and ret.

• By an mret or a tret instruction (defined later) to an address in an untrusted PMP region.

They cause an immediate revocation of trust (TES 1 → 0) so the instruction at the target PC, and all subsequent in-
structions, are executed as untrusted, TES' = TES AND pmp_lookup(pc').pmptectl.T. For any oher
instruction there is no revocation when the next PC is in an untrusted region, pmp_lookup(targetpc).
pmptectl.T==0, and execution of the next PC will cause a PMP fault. This includes all other jump variants
and sequential execution crossing a PMP boundary from a trusted to an untrusted region. In particular, attempting
to call an untrusted function directly from trusted code will cause an exception.

When in Untrusted Execution State (TES=0) any attempt to execute code or access data which matches a trusted
PMP entry will cause an exception and report an access fault with the same mcause as a conventional PMP fault.
This includes sequential execution crossing a PMP boundary from an untrusted region to a trusted one.

2.1. Leaving trusted execution without changing privilege level 5

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

2.2 Entering trusted execution without changing privilege level

Once in an Untrusted Execution State (TES=0) entry to Trusted Execution State (TES=1) is achieved by calling
into the Trusted Execution State Vector (TESVEC) table. The table should be mapped to a PMP entry with the
T bit set and should be executable by the current privilege mode. If the T bit is not set, or there is no executable
permission for the current privilege mode, a PMP fault occurs and an exception is taken.

Entry into the TESVEC must be through a call instruction, a return (ret) or an mret. The call can either be
a direct (jal) or indirect (jalr) jump-and-link instruction with ra as the link register. Entry into the TESVEC
via any other instruction type will cause an instruction fault with the machine exception PC set to the address of
the instruction and the mahcine trap value set to the address in the TESVEC to which the jump was attempted.
Calls to the TESVEC must use ra as the link register to ensure that on entry to trusted code the ra register is
guaranteed to contain the instruction immediately after the secure function call. Without this check an untrusted
actor could set the ra register to an arbitrary address (including anywhere in trusted code) then jump (without
a link or with an alternate link register) to the TESVEC. On exit from the secure function execution would then
continue from the chosen location. This would not cause privilege escalation as Trusted Execution Status will be
immediately revoked if the code is untrusted, but might permit ROP/JOP style attacks where an untrusted actor
could cause a jump to a trusted code fragment/gadget when the secure function returns.

Additional security for the transitions in to Trusted Execution State can be achieved by requiring landing markers
at all entry points. The marker instruction is c.addi zero, 0x15 (opcode 0x0055). This is a standard RISC-
V 16-bit instruction with no effect. If the target instruction is incorrect then an Illegal instruction fault is taken.

This feature is enabled using the Entry Marker Enable, eme, bit in the new Trusted Machine Execution State
Control Register, tmescr.

ROZ

0XLEN-1 1

eme

2

ete

Fig. 3: Trusted Machine Execution State (tmescr)

This feature provides an additional level of security in the scenario that the contents of the TESVEC has been
corrupted/compromised either by physical or software attack. The main disadvantage is that a secure function can
no longer be a pure C function and would either need a hand assembled pre-amble or compiler support for the
marker insertion.

The purpose of the ete field is described later in this section.

All TESVEC Records (TRs) are 8 bytes long and aligned to 8 bytes. The address of the first TR is programmed
in the custom CSR tmesvec, the top of the TESVEC is set in tmestop and points to the address immediately
above the TR in the TESVEC. If the (unsigned) value in tmestop is less than or equal to tmesvec then the
TESVEC table is empty and no transition to Trusted Execution State is possible through this mechanism. Note that
trusted execution can still be entered through trusted exception/interrupt handlers, see the sections on Exceptions
and Untrusted Interrupts for details.

The tmesvec and tmestop CSRs are read-only when TES=0 and their bottom three bits are Reserved (writes
ignored, read as zero). When a jump occurs to an address in the TESVEC the address is 8 byte aligned (bottom
3 bits of the jump address are ignored) and that TESVEC Record (TR) is fetched. The fetch must be treated as a
trusted instruction fetch for the purposes of PMP lookup and memory access as the TESVEC must be placed in
trusted memory to prevent modification by untrusted code.

ROZ utie

PAW-1 1 0

ep (entry point)

PAW63 2

mret

Fig. 4: TESVEC Record (TR)

6 Chapter 2. Specification

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Bits (PAW-1):2 of a TR specify bits (PAW-2):1 of an entry point into trusted code where PAW is the Physical
Address Width (PAW=32 for a RV32IMC core). Bit 0 of a TR is used to control the masking of untrusted
interrupts, bit 1 (TR.mret) is used to indicate that the entry point is only valid as the target of an mret
instruction. When an mret to the TESVEC occurs the content of mstatus.pll is ignored and no change in
privilege level occurs. Performing an mret to a TR which does not have this bit set or a call or return to an entry
which does have this bit set causes an illegal instruction fault. More details of this mechanism can be found in the
section on Untrusted Interrupts.

Note: Usage: Although gcc’s default function alignment is 4 bytes it is possible to reduce
this to 2 bytes as a compilation option, therefore functions used as TESVEC entries should append
__attribute__((aligned=4)) to the function declaration to guarantee suitable alignment of the entry
point.

If the fetch of the TR is successful the core enters Trusted Execution State (TES=1) and two new custom CSRs,
the Trusted Execution State Entry Point Record (tmesepr) and the Trusted Execution State Entry Point Status
(tmeseps) are updated. These control registers are modifiable in trusted m-mode (PL=M,TES=1). Two custom
user CSRs are also allocated, tesepr amd teseps, which provide u-mode read-only views of the tmesepr
and tmeseps respectively.

Note: Rationale: The teseps and tesepr are writeable in m-mode so that they can be saved and restored
during a context switch or to preserve User mode usage if a TESVEC call must be made during execution of an
interrupt/exception handler.

ROZ

PAW-1 3 2 0

ROZtraddr

PAWXLEN-1

Fig. 5: Trusted Execution State Entry Point Record (tesepr)

The tesepr.traddr field is updated with bits (PAW-1):3 of the TR’s address. The main reason for capturing
the TR’s address in tesepr is that it allows multiple TRs to share a trusted entry point (same value of traddr
field) while still being able to differentiate which TR was used to enter it. See the section on Untrusted OS with
secure functions and tasks for an illustration of when this is useful.

ROZ utie

0XLEN-1 1

ctes

2

Fig. 6: Trusted Execution State Entry Point Status (teseps)

The teseps.utie field (untrusted interrupt enable) is updated to the value of TR.utie. The teseps.utie
can be modified when in Trusted Execution Machine Mode (PL=M,TES=1) to enable/disable delivery of untrusted
interrupts during trusted execution.

The teseps.ctes field (caller TES) is updated to the Trusted Execution State of the call into the TESVEC.

A trusted return instruction (tret) is defined which jumps to the contents of the ra register and continues
execution from that point with TES = teseps.ctes.

This allows a secure routine that is returning to an untrusted caller to force revocation of trust (TES 1 → 0) and
thus prevent a malicious attacker continuing to execute trusted code.

If teseps.ctes is set, continued trusted execution is permitted provided that the return address is
within a trusted memory region, in summary, TES' = TES AND pmp_lookup(ra).pmptectl.T AND
teseps.ctes. This behavior allows a trusted function entered by the TESVEC to be called by trusted or
untrusted code and use a tret in both cases.

2.2. Entering trusted execution without changing privilege level 7

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

If a tret is executed when TES=0 an illegal instruction trap occurs.

Use of the instruction is optional, a standard ret can also be used as any jump to untrusted memory causes
all subsequent instructions, including the jump target, to be executed as untrusted code (TES=0). However, for
additional security, it is possible to enforce that all function returns from trusted to untrusted code use the tret
instruction. This feature is enabled by setting Enforce Tret Enable, tmescr.ete, attempting to use a ret to
exit trusted execution will then cause an illegal instruction fault.

If ret is used for returning from a TESVEC entry function some care is needed to ensure that an untrusted
call to the TESVEC cannot be placed at a PMP boundary between untrusted and trusted code such that the next
instruction (the return address for the call) would be to valid trusted code, which would allow that trusted code to be
executed without going through the TESVEC. The recommended way to prevent this to place an unimplemented
instruction (e.g. the pseudo assembler op unimp) at the start of any trusted code section. If a tret is used this
situation cannot arise because teseps.ctes will be zero and execution will be forced to leave trusted execution
regardless of pmp_lookup(ra).pmptectl.T.

Note: Toolchain: Support for tret is the one aspect of the specification that would benefit from compiler
support. It is suggested that a new function attribute, tes_entry, is provided which generates a tret instead
of a ret at all function return points. It should also clear a1 and, potentially, a0, if they are not needed for
returning a function result. Without this support it may be desirable to ensure that all trusted functions (in an
RV32 machine) have a int64_t result type. This will ensure that no use of a0 or a1 as temporaries while in
Trusted Execution State will be live in the register file on return from a trusted function. The attribute should also
ensure that the function is aligned to a 4 byte boundary to avoid having to apply this attribute explicitly and could
also be used to indicate when a function requires an Entry Marker if the tmescr.eme feature is enabled.

Trusted functions which return via a tretmust only be called via the TESVEC. Calling then directly from trusted
code could cause an unexpected exit from trusted execution when the tret instruction is executed. For trusted
functions that need to be accessed from both trusted and untrusted code it is recommended that they do not use
a tret. Depending on the performance/security trade off, they can either be placed directly in the TESVEC (if
tmescr.ete is not set) and return via a conventional ret, or a trampoline function can be used in the TESVEC
which calls the trusted function and then executes a tret

Calling via the TESVEC when already in a Trusted Execution State is permitted, so for example, a function pointer
to a TESVEC entry can be passed around in a structure or as a function parameter and called either from trusted
or untrusted code.

Transitions into Trusted Execution State via the TESVEC and all transitions out of trusted execution state are
horizontal and involve no change in privilege level. For example, a user mode untrusted task might call a trusted
function with access to keys for signing/authentication purposes but which can only access CSRs and memory
with user-mode permissions.

The mechanism for entering trusted execution via the TESVEC is summarized below.

2.3 General purpose register management

On transition from trusted to untrusted execution (TES 1 → 0) subsets of the general purpose register file are
automatically cleared by hardware. Which general purpose registers are affected depends upon the type of jump
performed. The purpose is to limit the risk of secret data leaking from Trusted Execution State while still sup-
porting efficient inter-calling between the trusted and untrusted states. No automatic clearing of general purpose
registers occurs when entering or returning from interrupt and exception handlers.

Note: Scope: The register selections are based on the standard ABI assignment as defined in The RISC-V
Instruction Set : User Manual. An alternate Embedded ABI which, although compatible with RV32I/R64I imple-
mentations, is primarily for RV32E machines (with only 16 general purpose registers) is not supported and is out
of the scope of this specification.

How the jump type affects which registers are cleared is summarised below.

8 Chapter 2. Specification

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

PC >= tmesvec and
PC < tmestop

Issue instruction
Update PC

Trusted Fetch of
TESVEC Record (TR) at
PCf{PC[31:2],2b’00}

Fetch of TR
at PC faults?

Update PC
PCf{TR.traddr,2b’00}

Take trap:
(t)mepc ← PC
(t)mtval ← PC

 PC ← (t)mtvec

Yes

Enter Trusted Execution
teseps.ctesfTES

TESf1
tmescrfPC|TR.utie

NoFetch PC
 using current TES

No

Fetch of PC
faults?

No

Yes

Yes

Instruction was
 jal/jalr with rd=ra

Yes

No

No

Fig. 7: Entering Trusted Execution via the TESVEC

Table 1: Summary of auto register clearing instructions on transition
from trusted to untrusted (TES 1 → 0)

PseudoInstructions General Purpose Registers Auto cleared
j jal zero,

offset
When rs!=ra, all ABI defined Temporary and Saved Registers are cleared.

c.j offset
jalr zero,
rs, offset
c.jr rs

ret jalr zero,
ra, 0

All ABI defined Temporary and Function Argumment Registers, except for
those used for Function Return (a0-a1), are cleared.

c.jr ra
tret tret
mret mret No clearing of registers occurs
Other Fault: Illegal TES transition

The standard ABI categorises the registers as follows:

• Function Arguments : a0-a7/x10-x17

• Return Registers : a0-a1/x10-x11

• Saved Registers : s0-s11/x8-x9,x18-x27

• Temporary Registers : t0-t6/x5-x7,x28-x31

The ABI defined Saved Registers are not reset on a return to untrusted execution because an ABI compliant
trusted function should restore the content of all Saved Registers to the (untrusted) values they had on entry from
the untrusted caller.

When jumping from trusted to untrusted code (with rs != ra), Function Arguments are retained to supporting
passing arguments to an untrusted function. See Calling untrusted/insecure code for further details of how to
safely perform Untrusted Function Calls.

The TES extension maintains Untrusted and Trusted versions of the Stack Pointer. If an instruction references the
Stack Pointer (x2) when TES=0 the Untrusted Stack Pointer is used and when TES=1 the Trusted Stack Pointer is
used. In addition there is a new custom CSR defined, Trusted view of Untrusted Stack Pointer (tusp), with URW
permissions when TES=1 and URO when TES=0. This allows trusted code to initialize or update the untrusted
stack before transitioning to Untrusted Execution.

2.3. General purpose register management 9

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Note: Usage: This switching of the stack pointer does limit the number of parameters that can be passed
between trusted/untrusted functions while still maintaining ABI compliance as all parameters must be passed using
the eight Function Argument Registers. It is still possible for a trusted caller/callee to place/retrieve additional
parameters on/from the stack during entry to a function (via the tusp CSR) but this requires a handcrafted
call/entry sequence.

To prevent untrusted code from subverting trusted code by modifying the location of global/thread state prior to
a secure function call, both Trusted and Untrusted versions of the Global Pointer (x3/gp) and Thread Pointer
(x4/tp) are provided. Two additional CSRs are provided, tugp for the gp and tutp for the tp, to give trusted
views of the untrusted versions of these registers, these CSRs have URW permissions when TES=1 and URO
when TES=0.

2.4 Exceptions

At reset all exceptions default to indirecting through tmtvec, a new custom trusted version of the mtvec CSR.
Exceptions can be delegated to untrusted handling using the trusted exception delegation register tmedeleg.
This new custom register uses the same mapping of bits to exceptions as the medeleg register defined in the
RISC-V Instruction Manual, Volume II: Privilege Architecture.

The tmedeleg remains m-mode read-only (MRO) when TES=0 so that untrusted code can check which excep-
tions are delegated to untrusted handling.

When operating with TES=1 all exceptions vector through tmtvec regardless of any tmedeleg settings. When
TES=0 exceptions indirect through mtvec or tmtvec depending on the setting of tmedeleg.

When vectoring through tmtvec the details of the exception are captured in a new bank of registers which are
trusted versions of the Base ISA registers used when exceptions vector through mtvec. The PC of the exception
is stored in tmepc, the cause is stored in tmcause and the trap value is stored in tmtval. There is also a a new
trusted variant of mstatus called tmstatus:

10 4 224XLEN-1 38 07 6111223 22 13

ROZ ROZmieROZmpiemppptes ROZROZ

Fig. 8: Trusted Machine Status (tmstatus)

On an exception or interrupt which vectors through tmtvec the tmstatus is updated as follows:

Table 2: Summary tmstatus updates on an exception/imterrupt ve-
cotred through tmtvec

New tmstatus On exception set to . . .
mpie Previous value of tmstatus.mie
mie Zero
mpp Previous privilege level
ptes Previous trusted execution state

Once the exception status has been recorded, TES is set to 1 and execution continues by vectoring through
tmtvec.

When vectoring delegated untrusted exceptions through mtvec the mepc, mstatus and mcause are updated
as defined in the Base ISA.

If an mret occurs when in Trusted Execution State, TES is updated to tmstatus.ptes and is checked against
pmp_lookup(tmepc).pmptectl.T. If they do not match an Instruction Fault of the type Illegal TES Tran-
sition is generated. The privilege level is set to tmstatus.mpp, the tmstatus.mie is set to tmstatus.
mpie, tmstatus.pie is set to one, and tmstatus.mpp is set to u-mode (0).

10 Chapter 2. Specification

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

If tmtvec does not point to trusted memory a PMP fault will occur and the core will follow the implementation
defined behaviour for a fault which occurs in a handler.

A new XLEN-bits wide CSR scratch register, tmscratch, is also defined for trusted m-mode use
(TES=1,PL=M). For example, to free up a general purpose register for use in a trusted handler.

Asynchronous exceptions should not be delivered while trusted interrupts are masked as an asynchronous excep-
tion caused by an untrusted operations could corrupt trusted operation. This may require the core to delay taking
an asynchronous exception until interrupts are unmasked.

2.5 Trusted Interrupts

At reset all interrupts default to being trusted interrupts. When a trusted interrupt fires the processor transitions
into Trusted Execution State (if TES was 0). Execution continues from an address based on tmtvec using the
same direct/vector mode schemes that are defined for mtvec. If the vector entry does not map to trusted memory
a PMP fault will occur and handled in the same way as any other fault which occurs in a handler.

When vectoring through tmtvec the details of the exception are captured in a bank of registers which are trusted
versions of the Base ISA registers used when exception vector through mtvec. See the sections on Exceptions for
more details of these. Trusted interrupts can be masked by clearing tmstatus.mie but can never be masked by
setting mstatus.mie.

When a trusted interrupt handler completes and execution resumes via an mret the TES is set to tmstatus.
ptes and is checked against pmp_lookup(tmepc).pmptectl.T. If they do not match an Instruction Fault
of the type Illegal TES Transition is generated.

Therefore, if a trusted interrupt is taken when operating in Trusted Execution State the core will run the handler
and return to the interrupted code without leaving Trusted Execution State.

2.6 Untrusted Interrupts

Trusted code can delegate interrupts for handling by untrusted handlers using the Trusted Interrupt Delegation
registers, tmidelegX, where X depends on the number of interrupt sources. An interrupt can be delegated
to untrusted handling by setting a bit in this register array, the tmidelegX[Y] bit controls the trust status
of the interrupt with the id N where N=X*XLEN+Y. In subsequent text this delegation bit is referred to as
tmideleg[N].

When operating in an Untrusted Execution State (TES=0) untrusted interrupts vector through mtvec and behave
according to the RISC-V Instruction Manual, Volume II: Privilege Architecture. Both trusted and untrusted inter-
rupts can be taken immediately provided that all masking/priority constraints defined in the Base ISA and interrupt
controller are met.

If mtvec points to trusted memory a PMP fault will occur and follow the implementation defined behaviour for
any fault which occurs in a handler.

However, when an untrusted interrupt occurs when in Trusted Execution State the behaviour depends upon
teseps.utie (Untrusted Interrupt Enable). If this bit is clear, untrusted interrupts are masked and will not
be delivered until untrusted execution resumes. If it is set, untrusted interrupts can pre-empt trusted execution
(assuming all the standard ISA and interrupt controller conditions for the interrupt are met) but must first pass
through a trusted pre-handler vectored off tmtvec and return to trusted execution via a trusted pre-handler. More
details have how his could be done are given later this secton.

Untrusted interrupts can be masked regardless of the current Trusted Execution State by clearing mstatus.mie,
in addition, untrusted interrupts will always be masked during trusted execution if tmstatus.mie is clear.

A summary of how teseps.utie and tmideleg[N] effect an interrupts handling are summarised below.

2.5. Trusted Interrupts 11

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Table 3: Summary of interrupt handling options
tmide-
leg[N]

utie TES Interrupt handling

0 0 or
1

0 or
1

Vector off tmtvec immediately if tmstatus.mie set

1 0 0 Vector off mtvec immediately if mstatus.mie set
1 0 1 Vector off mtvec delayed until TES 1 → 0
1 1 0 Vector off mtvec immediately if mstatus.mie set
1 1 1 Vector off tmtvec immediately to a trusted pre-handler if mstatus.mie and

tmstatus.mie set

In a system with untrusted interrupts the approach chosen to handle them is a trade-off between complexity,
security and latency and may vary depending upon the interrupt source and expected duration of the trusted
operation, suggested approaches are:

• Set tmideleg[N]=1 and teseps.utie=0 so that handling of the untrusted interrupt N is delayed until
the processor returns to Untrusted Execution (TES=0). This is the safest and simplest solution but might
cause unacceptably high interrupt latencies for untrusted interrupts. This could be mitigated by limiting
the length of time spent in trusted execution, for example, by breaking down long secure operations into
sequences of shorter ones. This approach could be further refined by the secure operations polling the
pending interrupts and yielding/returning to untrusted state if an untrusted interrupt with hard real time
constraints arrives.

IRQ

u-mode untrusted app untrusted app

m-mode untrusted handler

u-mode secure function

ret

mret

T
E
S
=

0
T
E
S
=

1

mret

call to TESVEC

Fig. 9: Delayed untrusted interrupt (teseps.utie=0, tmideleg[N]=1)

• Set tmideleg[N]=0, with teseps.utie either 0 or 1, so that interrupt N is always handled by a
trusted interrupt handler (vectored of tmtvec). This is the best solution for very latency sensitive inter-
rupts provided that the handling is simple enough that its trustworthiness can be assured. Note that in this
configuration if the interrupt occurs while TES=0 the interrupt will still be processed by the trusted handler.
The main disadvantage is that it adds to the amount of code running in the trusted domain.

• Set tmideleg[N]=1 and teseps.utie=1 so that if the interrupt occurs when in an Untrusted Execu-
tion State it will be handled by an untrusted handler vectored off mtvec unless it is masked by mstatus.
mie, however, if the core is in a Trusted Execution State the interrupt will vector off tmtvec, unless it is
masked by either mstatus.mie or tmstatus.mie, and will be processed by a trusted pre-handler. The
pre-handler:

1. Saves the general purpose register state (x1-x31).

2. Saves the mstatus, sets the previous privilege (mstatus.mpp) to machine mode and clears pre-
vious interrupt enable (mstatus.mpie), so that when the untrusted handler performs an mret
interrupts will still be masked and the core will remain in machine mode.

3. Set mepc to the address of a TESVEC record assigned to performing returns from untrusted handlers.
This entry will have TR.mret set to mark it as a valid target of an mret instruction.

12 Chapter 2. Specification

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

IRQ

u-mode untrusted app untrusted app

m-mode trusted handler

u-mode secure function secure function

call to TESVEC

irq to tmtvec mret

ret

g

TE
S=

0
TE

S=
1

Fig. 10: Low Latency Trusted Interrupt (teseps.utie=X, tmideleg[N]=0)

4. Clear the Function Argument Registers, note that the Temporary and Saved Registers will be cleared
automatically by the jump in the next stage.

5. Jumps to the untrusted handler. This untrusted handler can behave exactly as it would if the interrupt
was taken while executing in an Untrusted Execution State, however, optimisations are possible if
the pre-handler is known to have run as the machine context prior to the interrupt will already have
been saved. For example, the handler could be setup with two entry points, the main untrusted entry
point which spills to the stack the any untrusted state that needs to be preserved (and sets a register to
indicate that a restore is needed) and a (later) trusted entry point (which will therefore leave the restore
indicating register clear). At the end of the handler the restore sequence is skipped if the trusted entry
point was used.

When the untrusted handler performs an mret the routine for performing returns from untrusted handlers will
be entered. This post-handler routine will restore the trusted state and resume execution of the trusted code by
performing another mret which will restore the machine state saved in tmepc and tmstatus when the trusted
pre-handler was entered.

This option is illustrated below.

IRQ

m-mode untrusted handler

u-mode untrusted app

m-mode pre post

u-mode secure function secure function

call to TESVEC

irq to tmtvec

jump to mtvec

mret to TESVEC

mret

ret

TE
S=

0
TE

S=
1

Fig. 11: Untrusted handler with trusted pre and post handler (teseps.utie=1, tmideleg[N]=1)

Note that when an mret to the TESVEC occurs the content of mstatus.mpp is ignored and no change in
privilege level occurs.

An alternate implementation which avoids executing an mret to the TESVEC is to place the body of the untrusted
handler in a separate function. This function can then be called directly by the top-level untrusted interrupt handler

2.6. Untrusted Interrupts 13

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

or, if the interrupt occurs during trusted execution, use the jump and return via the TESVEC scheme described in
Calling untrusted/insecure code.

2.7 Core Level Interrupt Controller (CLIC) support

Note: The CLIC (Core Level Interrupt Controller) specification is currently only in draft form and changes are
ongoing. This section is therefore subject to change.

The Core-Local Interrupt Controller (CLIC) is designed to provide low-latency, vectored, pre-emptive inter-
rupts for RISC-V systems. The latest specification for the CLIC can be found here: https://github.com/riscv/
riscv-fast-interrupt/blob/master/clic.adoc. It is important to read and understand this specification before reading
the rest of this section as knowledge of the CLIC specification is assumed.

To reduce design complexity and verification space if both Trusted Execution State and the CLIC are implemented:
the CLIC is permanently activated, the basic interrupt scheme defined in the Base ISA is not available and the mip,
mie, mideleg and tmideleg registers are tied to zero.

When enabling both the Trusted Execution State and the CLIC extensions some additional features are needed:

• The bottom 6 bits of tmtvec and mtvec must be hardwired to 000011. This forces the CLIC to be
enabled and, as per the CLIC specification, requires that the unvectored trap handler is always aligned to 64
bytes.

• A new CSR, the Trusted Machine Trap Vector Table (tmtvt), is defined through which trusted interrupts
are vectored instead of going via mtvt. Selection between use of tmtvec and tmtvt is the same as that
for mtvec and mtvt in the CLIC specification.

• A trusted variant of mintthresh (tmintthresh) is defined which can be used by trusted handlers to
temporarily raise the threshold level for taking interrupts.

• The tmcause register is updated in line with the mcause register changes defined in the CLIC specifica-
tion, with the addition that aliases of ptes, (and for the Zmulti extension ptdid) are also added to reduce
context save/restore code:

tmcause
Bits Field Description
XLEN-1 Interrupt Interrupt=1, Exception=0

30 minhv Hardware vectoring in progress when set
29:28 mpp[1:0] Previous privilege mode, alias of tmstatus.mpp

27 mpie Previous interrupt enable, alias of tmstatus.mpie
26:25 (reserved)

24 ptes Previous trusted execution state, tmstatus.ptes alias
23:16 mpil[7:0] Previous interrupt level

15 (reserved)
14:12 ptdid Previous trusted domain id, tmstatus.ptdid alias if
→˓Zmultit
11:0 exccode[11:0] Exception/interrupt code

• There are no trusted variants of the optional xscratch registers defined in the CLIC specifcation.

• By default, all CLIC memory-mapped registers are read-only when in Untrusted Execution State, when in
Trusted Execution State the access permissions are those defined in the CLIC specification.

• A new set of custom memory-mapped registers, clicinttidlg, are provided which can be used to
delegate individual interrupts to untrusted handling. The array is read-only during untrusted execution. The
array is mapped at the offset range 0x0A00-0x0BFF in the m-mode CLIC memory map and contains 1-
bit per interrupt (a maximum of 4096 interrupts). The per-interrupt registers (clicintip, clicintie,
clicintattr and clicintctl) for any interrupt which has been delegated become modifiable in
Untrusted Execution State.

14 Chapter 2. Specification

https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

• When selecting the next horizontal interrupt to service using mnxti, only interrupts mapped to the current
Untrusted/Trusted Execution State are considered. When in Trusted Execution State the trap handler table
entry returned by a read is an offset from tmtvt not mtvt, and writes/sets update mintstatus.mil
and tmcause.exccode.

• A custom memory-mapped register, Untrusted Interrupt Level Shiftt, clicutils, is defined at address
0x0800 in the m-mode CLIC memory map which can be used to reduce the level of all untrusted interrupts.
The register is read-only during untrusted execution. The default value is zero which applies no level
reduction to untrusted interrupts. The register can be set to any value from 0 to 7 to indicate by how much
untrusted levels are shifted. The level of trusted interrupt N uses the standard scheme defined in the CLIC
specification: the top nlbits of clicintctl[N] specify the top bits of the 8-bit level, the lower bits
are all set to 1. Here is an example:

Trusted Interrupt N Level Calculation:
CLICINTCTLBITS = 6
cliccfg.nlbits = 3
nlbits = min(CLICINTCTLBITS,cliccfg.nlbits) = 3
clicintctl[N] = LLLppp..
level = LLL11111
prority = ppp11111

For an untrusted interrupt N, the top clicutils bits of the the level are set to 0, the next most significant
bits are the top nlbits-min(nlbits,clicutils) bits of clicintctl[N] and the lower bits are
set to 1. For example:

Untrusted Interrupt N Level calculation:
CLICINTCTLBITS = 8
cliccfg.nlbits = 5
nlbits = min(CLICINTCTLBITS,cliccfg.nlbits) = 5
clicutils = 3
level bits = nlbits-min(nlbits,clicutils) = 2
clicintctl[N] = LLpppppp
level = 000LL111
prority = pppppp11

Untrusted Interrupt N Level calculation where clicutils>nlbits:
CLICINTCTLBITS = 6
cliccfg.nlbits = 4
nlbits = min(CLICINTCTLBITS,cliccfg.nlbits) = 4
clicutils = 5
level bits = nlbits-min(nlbits,clicutils) = 0
clicintctl[N] = pppppp..
level = 00000111
prority = pppppp11

Rules for when an interrupt can be taken are summarised below:

Interrupt N type: Taken if:
Trusted tmstatus.mie AND clicintie[N] AND

level > max(mintstatus.mil,tmintthresh)

Untrusted tmstatus.mie AND clicintie[N] AND mstatus.mie AND
level > max(mintstatus.mil,tmintthresh) AND
level > max(mintstatus.mil,mintthresh) AND
(TES==0 OR teseps.utie)

Note that:

• If trusted and untrusted interrupts have the same level the trusted interrupt are always selected over the
untrusted ones. Therefore, the highest level of trusted interrupt can never be blocked by untrusted execution
regardless of the setting of mstatus.mie, mintthresh or clicutils.

• For an untrusted interrupt to be activated during trusted execution teseps.utie must be set and the

2.7. Core Level Interrupt Controller (CLIC) support 15

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

interrupt handling will commence with entry to a trusted pre-handler vectored through tmtvec or tmtvt.

• When an mret is executed in untrusted mode the new CLIC interrupt level is min(mcause.mpil,
255>>clicutils). This prevents an untrusted handler raising the interrupt level above the maximum
permissible level for an untrusted interrupt.

• Horizontal TES transitions due to calls/return through the TESVEC have no affect on the current interrupt
level so it is possible for untrusted execution to temporarily run at a higher level than 255>>clicutils
if a trusted handler makes a call to an untrusted function.

Table 4: Summary of custom m-mode CLIC memory map
Address Off-
set

Register Setting Permissions Description
TES=0 TES=1

0x0800 clicutils 0 to 7 RO RW Untrusted Trusted Interrupt Level
Shift

0x0A00-0x0BFF clicint-
tidlg[i]

1
bit/interrupt

RO RW Trusted Interrupt Delegation

2.8 Summary of State Transitions

Trusted state transitons associated with instruction exection (as opposed to traps and interrupts) is summarized in
the table below.

Table 5: Summary of instruction driven Trusted State Transitions
Current trust state PMPTECTL.T

of next PC
Next trust state

TES Insn TES Auto-clear
X call/ret/mret TESVEC 1 1 -

0 Instruction access fault
other TESVEC X Instruction access fault

0 any legal 0 0 -
1 Instruction access fault

1 tret ctes ctes Yes
!ctes Instruction access fault

mret ptes ptes No
!ptes Instruction access fault

j/ret 0 0 Yes
other Instruction access fault
not tret/mret 1 1 -

2.9 Trap Vector Locking

An additional security feature is the ability to lock the trap vectors so that they cannot me modified until the next
reset is performed.

Two lock registers are provided:

• mtvlock is used to lock the untrusted trap vector registers, mtvec, and if the CLIC is implemented,
mtvt.

• tmtvlock is used to lock the trusted trap vector registers, tmtvec, and if the CLIC is implemented,
tmtvt.

16 Chapter 2. Specification

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

m
re

t

auf

zu

U

TES=0

U

TES=1

M

TES=1

M

TES=0

pmp_lookup(pc).pmptectl.T=0

tret AND teseps.ctes=0

TESVEC

pmp_lookup(pc).pmptectl.T=0

tret AND teseps.ctes=0

TESVEC

m
re

t

RESET

(irqN|excN) AND
tm(i|e)deleg[N]=0

(i
rq

N
|e

xc
N

)

(i
rq

N
|e

xc
N

)
A

N
D

tm
(i

|e
)d

e
le

g
[N

]=
1

(irqN|excN) AND
tm

(i|e)deleg[N]=
0

Fig. 12: Trusted Execution State Transiton Summary

ROZ lock

0XLEN-1 1

Fig. 13: Trap Vector Lock Register Format (mtvlock and tmtvlock)

2.9. Trap Vector Locking 17

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

2.10 Debug

2.10.1 Trusted Self-hosted Debug

A trusted debug monitor running in trusted m-mode and monitoring trusted and untrusted u-mode tasks can set
soft breakpoints using the ebreak instruction and hard breakpoints using triggers. To enable trusted self-hosted
debug mode tmedeleg[3] must be cleared so that both trusted and untrusted debug exceptions are vectored
through tmtvec. When execution of trusted user code resumes (via an mret) Trusted Execution State is retained.
However if re-entering untrusted user code the automatic trust revocation mechanism is activated and Untrusted
Execution State (TES=0) is entered.

2.10.2 Untrusted Self-hosted Debug

An untrusted debug monitor running in untrusted m-mode and monitoring untrusted u-mode tasks can set soft
breakpoints using the ebreak instruction and hardware breakpoints using triggers.To enable untrusted self-hosted
debug mode tmedeleg[3] must be set so that untrusted debug exceptions are vectored through mtvec. If an
ebreak occurs when running trusted code this will be vectored through tmtvec. However, to avoid an untrusted
debug monitor making inferences about architectural state updates during trusted execution, all triggers are ignored
in trusted execution state when tmedeleg[3] is set.

Self-hosted debug exception handling is summarized in the table below.

Table 6: Summary of Self-Hosted Debug Exception handling scenarios
tmedeleg[3] TES on entry Exception Type Vector TES at mret
0 0 Trigger or ebreak tmtvec 1 → 0

1 tmtvec 1
1 0 mtvec 0

1
1

ebreak tmtvec 1
Trigger Ignored, no debug exception taken

2.10.3 Trusted External Debug

Whether the external debug is trusted or untrusted is controlled by a mode pin at the boundary of the core. An
external debugger operating in Trusted External Debug Mode (TEDM asserted) can take full control of the core
out of reset. At this point the core is operating in a Trusted Execution State so the SOC must therefore provide
mechanisms (e.g. fuses, or keys) to ensure that this mode pin can be locked down on production parts.

Trusted External Debug mode operates in Trusted Execution State (TES=1), memory access commands and ac-
cesses initiated by instructions executed from the PBUF are always performed in Trusted Execution State. How-
ever, when single stepping the current Trusted Execution State of the machine is used. It is therefore possible
to single step through trusted and untrusted code, including stepping through trusted state transitions via the
TESVEC.

This high level of privilege makes it essential that extensive measures are used to ensure TEDM cannot be enabled
by a malicious attack.

The PBUF code can never cause a change to the Trusted Execution State (TES) of the core because all jumps are
illegal, interrupts are masked and exceptions are reported to the debugger and do not redirect the PC to mtvec or
tmtvec .

18 Chapter 2. Specification

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

2.10.4 Untrusted External Debug

Untrusted external debug mode (TEDM de-asserted) allows debug operation at a reduced level of trustworthiness.
However, access to this mode should still be carefully controlled as the high level control a debugger has signifi-
cantly increases the risk that secret information might be inferred through side channel observations. In particular
production parts should provide mechanisms (e.g. fuses or keys) to lock down any form of external debug. When
operating in untrusted external debug mode it is impossible to get direct visibility of the architectural state of the
core when it is running in Trusted Execution State. For example:

• If the debugger requests to halt the core straight out of reset, or at any other time when the core is in Trusted
Execution State, halting will not occur until the core exits Trusted Execution State.

• Single stepping through untrusted code is supported but if execution steps in to Trusted Execution State the
core will not halt until the core leaves Trusted Execution State.

• Triggers are disabled when TEDM=0 and the core is in Trusted Execution State.

• If the external debug unit has support for System Bus Access all memory accesses must be validated by the
PMP and refused if they match a trusted PMP entry.

If an ebreak instruction is encountered while running in Trusted Execution State the request to transfer control
to external debug is ignored and a trusted exception will be taken by vectoring off tmtvec instead.

Table 7: Summary of External Debug handling scenarios
TEDM Current TES Exception Type Behaviour
0 0 ebreak Enter untrusted debug mode

Trigger
Single step completion

1 ebreak Trusted exception vectored off tmtvec
Trigger Ignored, no entry to debug mode made
Single step completion

1 X Any Enter trusted debug mode

Note: Implementation: dynamic changes in the TEDM pin should be supported to allow locking/unlocking
mechanisms to be implemented at the SOC level which can be controlled via the debugger. In particular, if TEDM
is asserted/de-asserted while the CPU is halted subsequent debug operations should be performed with the new
permissions, and if trusted execution is resumed with TEDM de-asserted it should not halt until the core leaves
trusted execution.

2.10. Debug 19

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

20 Chapter 2. Specification

CHAPTER

THREE

SECURITY ASSESSMENT

Because the trust status of every instruction is checked against the PMP, and immediate revocation of trust occurs
if this trust is violated (TES 1 → 0), this architecture provides a high level of robustness against software and
physical attacks attempting to escalate the privilege level. Sustained privileged execution of untrusted code would
require co-ordinated attacks on the PMP and the TESVEC (or the IFU TES status) and security checks in the SOC
(for example, via a Trusted Address Space Controller).

Note: Implementation: A physical attack might flip the trusted status of individual instructions as they pass down
the pipe but this would be transient and flushed to an untrusted status during the PMP T-bit checks on subsequent
instructions. An alternate microarchitecture is to have a single TES FSM (with multiple redundant states) and
create guard periods which flush the pipe at all TES transitions so that trusted and untrusted instructions are
never present in the pipe at the same time. This increases the cost of transitioning between states but may give
better resilience. With either implementation, fundamentally, this architecture is believed to be more secure than
competitor trust ISA architectures. A design may also want to implement additional protection/redunandancy
within the PMP to reduce the risk of physical attack to that.

Note that trusted code (T bit set in the PMP entry) can never be read or modified by untrusted code regardless of
the RWX access permissions for the PMP entry.

The TESVEC maintains Control Flow Integrity (CFI) of transitions into Trusted Execution by limiting these to a
small set of valid entry points in to trusted code. The only other ways to transition to trusted execution are reset or
via tmtvec when an exception/interrupt occurs.

The Trusted Execution State mechanism is compatible with memory fix/flash patch features provided that the
following guidelines are followed:

• The flash patch/memory fix control registers must either be mapped to a trusted region or provide a lock
mechanism so that they cannot be reprogrammed by untrusted code.

• Any patches to trusted code must redirect execution to a region of memory which is trusted, any patches
to untrusted code must redirect execution to a region of memory which is untrusted. If these rules are not
followed the standard TES access checks will ensure a PMP fault is generated

• Trusted External Debug Mode (TEDM) must be fused off or key protected in production parts. If TEDM is
enabled the debugger has access to trusted execution state out of reset and can bypass secure boot and repro-
gram the flash patch. However all security is compromised in this state, not just the flash patch mechanism,
hence the importance of protecting access to this feature.

When in Untrusted External Debug Mode the external debugger is prevented from halting the core until it leaves
trusted execution for the first time, there is therefore no opportunity to bypass the secure boot process or reprogram
the flash patch controller provided the guidelines above are followed.

21

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

22 Chapter 3. Security Assessment

CHAPTER

FOUR

USE CASES/MODELS

4.1 Lightweight secure function calls

This extension provides a very lightweight mechanism to implement Secure Function Calls. Trusted functions
are placed in trusted memory and the TESVEC table is initialized with a table of entry points for all the Secure
Functions that have been implemented. Secure functions can be written entirely in C and use the standard calling
convention defined in the ABI with no special pre-amble or post-amble; provided that all parameters can be passed
in the eight registers assigned to Function Arguments. Trusted code can call these routines directly without the
overhead of indirecting through the TESVEC table.

When calling a secure function from untrusted code the calling convention is the same as the ABI for conventional
functions. The only difference is that at link time the target of the call resolves to an address in the TESVEC table
rather than the address of the secure function. The code below gives an example of how this could be implemented:

In this setup both untrusted and untrusted code appear to call the secure function through the same label, however,
the header file prefixes all entry points with to when compiling untrusted code so the function is actually called via
the TESVEC. If the secure function was called from trusted code then trusted execution continues when the secure
function returns, however, if the call was from untrusted code the return address will be in untrusted memory and
Untrusted Execution State is entered (TES=0).

On return from a secure function all ABI defined Temporary and Function Argument registers, except the Function
Return registers, are reset to zero. The ABI defined Saved Registers are not reset because the secure function
should return them to the value they had on entry prior to returning to the untrusted code.

For enhanced security a secure function can return to its caller using a tret. The use of tret is a software
decision, it is always permitted to use ret to return to untrusted code (unless tmescr.ete has been set to
enforce use of a tret in this situation). Which method is chosen is a trade-off between enhanced security and
performance/software complexity. However, if a tret is used in a TESVEC entry point function it is no longer
possible for that function to be called directly from trusted code, either all calls must be made through the TESVEC
or a trampoline function must be used in the TESVEC which then calls the shared code.

Note that the shadowing mechanism ensures that untrusted code cannot modify/corrupt the Global Pointer (gp)
and Thread Pointer (tp) values used by trusted code and therefore prevents secure functions making unintended
data accesses/jumps based on the content of these registers.

If there are large numbers of arguments to the function it is possible that they could exceed the 8 registers available
for argument passing. The caller will then use the stack to pass these additional parameters, however, due to stack
shadowing, if the caller is untrusted these parameters are not directly available on the trusted stack. A number of
solutions to this are possible:

• Modify the API so that some of the arguments are passed in a structure so that none get spilled to the stack.

• Use asm inserts in the secure function to read variables from the untrusted stack via the tusp CSR.

• Insert a trampoline function that copies the arguments passed on the untrusted stack to the trusted stack.

Some additional care needs to be taken with passing parameters on the stack if both trusted and untrusted calls
through the TESVEC are made.

23

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Untrusted code

Secure function header (securelib.h)

Secure code

3

3

Fig. 1: Example of secure function calling (with and without using trampolines)

24 Chapter 4. Use cases/models

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

4.2 Calling untrusted/insecure code

Calling untrusted code is not as efficient as making trusted calls as additional steps are needed to protect general
purpose register contents and to control the re-entry point to the trusted code. The recommended procedure is as
follows:

1. The trusted code calls a trusted trampoline function with an argument list that matches that of the target
untrusted function.

2. The trampoline function saves the ABI defined Saved Registers and the Return Address (ra) to the trusted
stack and, ideally, clears the unused ABI defined Function Registers as these registers will not be cleared by
the hardware mechanism.

3. The trampoline labels the point of return from the untrusted call and saves it in a TESVEC entry. It then
sets ra to point to that TESVEC entry.

4. The trampoline jumps (with no link register) to the untrusted function so that the ra set in the previous
step is preserved. The transition to untrusted execution will automatically clear the Temporary and Saved
Registers so no code is required to clear these.

5. On return from the untrusted code the trampoline restores the Saved Registers and the Return Address and
returns to the Trusted Caller.

To minimise the risk of security holes in the trampoline construction it can be generated using a define. An
example of a suitable define is provided below. The define has three fixed arguments: the return type (RT), the
function name (FN) and number of function arguments (NARGS) and a variadic which is the arguments to the
function. It generates a function called ut_fn_FN with the same arguments as the wrapped function plus one
additional argument which is a pointer to the TESVEC record where the return address for trusted execution is
placed:

#define UT_FN_WRAPPER(RT,FN,NARGS,...) \
RT ut_fn_ ##FN(__VA_ARGS__, tesvec_record_t *tr) { \

asm (\
"la ra, 1f\n\t" \
"sw ra, 0(%[TR])\n\t" \
"sw zero, 4 (%[TR])\n\t" \
"mv ra, %[TR]\n\t" \
".irpc arg,01234567\n\t" \
".if \\arg>=" #NARGS "\n\t"\
" mv a\\arg, zero\n\t" \
".endif\n\t" \
".endr\n\t" \
"la t0," #FN "\n\t" \
"jr t0\n\t" \
"1:\n\t" \

: : [TR] "r" (tr) : "ra", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8",
→˓ "s9", "s10", "s11"); \
}

By listing all the Saved Registers as being clobbered, code to save and restore these will automatically be generated
by the compiler. The .irpc loop zeros all Argument Registers that are not used to pass arguments to the untrusted
function.

4.2. Calling untrusted/insecure code 25

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

4.3 Trusted OS with untrusted (sandboxed) and trusted tasks

A trusted OS runs in Trusted Execution State (TES=1) and can start trusted or untrusted tasks running in any
supported privilege mode. When running a trusted OS all exceptions are handled by trusted exception handlers
(tmedeleg[N]=0). The OS start tasks running either in untrusted memory (for an untrusted task) or in trusted
memory for a trusted one. When a task performs a system call (by executing an ecall instruction) the OS will be
re-entered through tmtvec with TES=1. The system call is processed and an mret is performed to continue
execution of the untrusted or trusted task.

4.4 Untrusted OS with secure functions and tasks

After the boot code completes and the processor enters Untrusted Execution State (TES=0) the setup and execution
of an untrusted OS can proceed largely unaware of the presence of the Trusted Execution State. The constraints
are:

• PMP entries reserved for secure use will be locked and read-only to an untrusted OS

• Only interrupts and exceptions which have been delegated using tmideleg and tmedeleg respectively
can be handled. Typically it is expected that all exceptions (which occur while running untrusted code) are
handled by the untrusted OS.

• Memory subsystems and peripherals with trust protection will be inaccessible. Attempts to access them will
either result in a PMP fault exception or, if the region is not mapped to the PMP, will result in a bus fault.

• To run secure tasks the trusted environment will need to provide trusted services to the untrusted OS for
initialising, starting and terminating secure tasks. In this use case untrusted interrupts are possible and
could occur during execution of a either secure function or task. Refer to the Untrusted Interrupts section
for a description of the mechanisms by which untrusted interrupts can be handled.

There is an additional complication that due to context switching during untrusted execution the secure func-
tion/task that was executing when an untrusted interrupt occurs may not be the same function/task that continues
when the handler returns. This requires the trusted environment to maintain an array of multiple secure contexts,
each with a dedicated entry in the TESVEC for resuming that context. This is illustrated in the figure below.

timer irq

m-mode task switch task switch

u-mode tid0 tid1 tid0

m-mode save tid0 save tid1 restore tid0

u-mode tid0 tid1 tid0

TE
S=

0
TE

S=
1

secure call

via TESVEC

jump to

mtvec

mret mret

save trusted tid0
tesvec_mret[0]=restore
mepc = testvec_mret+0

save trusted tid1
tesvec_mret[1]=restore
mepc = testvec_mret+1

restore trusted tid0
mepc = trusted tid0.pc

secure call

via TESVEC

jump to

mtvec

untrusted tid0.pc = mepc
restore untrusted tid1
mepc = untrusted tid1.pc

untrusted tid1.pc = mepc
restore untrusted tid0
mepc = untrusted tid0.pc

irq irq

save untrusted tid0 save untrusted tid1

Fig. 2: Switching between trusted contexts using an untrusted scheduler

When programming a TESVEC record to restart a specific context, a shared routine can be used as the context
can be identified using tesepr.traddr. The figure below illustrates how TESVEC could be used to manage
restoring multiple secure contexts.

26 Chapter 4. Use cases/models

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Fig. 3: Using to TESVEC to manage restart of multiple secure contexts

4.4. Untrusted OS with secure functions and tasks 27

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

28 Chapter 4. Use cases/models

CHAPTER

FIVE

ISA SUMMARY AND ENCODINGS

5.1 Instruction Summary

One new instruction is added tret, return from trusted state, which takes no explicit operands. It performs an
indirect jump to the address in x1/ra and, if teseps.ctes is clear, switches to Untrusted Execution State
(TES=0). If teseps.ctes is set, continued trusted execution is permitted provided that the return address
is within a trusted memory region, in summary, TES = pmp_lookup(ra).pmptectl.T AND teseps.
ctes.

If executed when TES=0 it causes an illegal instruction trap.

Note: The opcode has not yet been assigned.

5.2 CSR Summary

The table below summarises the custom CSRs added to the ISA to support Trusted Execution State in a baseline
configuration with M-mode and, optionally, U-mode. ROZ stands for read only zero, the difference between
MROZ and UROZ is that UROZ will aleays retun zero regardless of privliege level but MROZ will trap if an
access is attmpted from a lower privilege level. The tesepr amd teseps are u-mode accessible views of the
tmesepr and tmeseps, that is they share the same state bits.

29

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Table 1: Custom TES CSRs for baseline configuration with CLIC)
Addr Permission Name Reset Description

TES=1 TES=0 Value
0x7E0 MRW MROZ tmescr 0 Trusted Machine Execution State Control Regis-

ter
0x7E1 MRW MRO tmesvec Trusted Machine Execution State Vector Base
0x7E2 MRW MRO tmestop Trusted Machine Execution State Vector Top
0x7E3 MRW MRO tmedeleg Trusted Machine Exception Delegation
0x7E4 MRW MROZ tmtvec 0 or 3 if CLIC Trusted Machine Trap Vector Base Address Reg-

ister
0x7E5 MRW MROZ tmtvt 0 Trusted Machine Trap Vector Table (CLIC only)
0x7E6 MRW MROZ tmint-

thresh
0 Trusted Machine Interrupt Threshold (CLIC

only)
0x7E7 MRW MROZ tmstatus mie=0,

other=X
Trusted Machine Status

0x7E8 MRW MROZ tmepc X Trusted Machine Exception Program Counter
0x7E9 MRW MROZ tmcause 0 Trusted Machine Trap Cause
0x7EB MRW MROZ tmtval X Trusted Machine Trap Value
0x7EC MRW MROZ tmscratch X Trusted Machine Scratch Register
0x7ED MRW MROZ tmesepr X Trusted Machine Execution State Entry Point

Record
0x7EE MRW MROZ tmeseps 0 Trusted Machine Execution State Entry Point

Status
0x7EF MRW MRW mtvlock 0 Machine Trap Vector Lock
0x7F0 MRW MROZ tmtvlock Trusted Machine Trap Vector Lock
0x7F8 MRW Var pmptectl0-

7
impdef PMP Trusted Execution Control

0x800 URW UROZ tusp X Trusted view of Untrusted Stack Pointer
0x801 URW UROZ tugp X Trusted view of Untrusted Global Pointer
0x802 URW UROZ tutp X Trusted view of Untrusted Thread Pointer
0xCC0 URO UROZ tesepr X Trusted Execution State Entry Point Record
0xCC1 URO UROZ teseps 0 Trusted Execution State Entry Point Status
TBA MRW MROZ tmidelegX Trusted Machine Interrupt Delegation (if no

CLIC)

To allow untrusted execution to discover which PMP entries and memory regions have been reserved for trusted
use some fields of the PMP fields assigned for trusted use are readable (MRO) when TES=0.

Table 2: Access permissions for PMP fields
pmpcfg.L pmptectl.T PMP Permissions

TES=1 TES=0
pmpcfg.A pmpaddr pmptectl.T PMP other

0 0 MRW
1 0 MRO
0 1 MRW MRO MROZ
1 1 MRO MROZ

Access permissions to all other CSRs are unaffected by the current Trusted Execution State.

30 Chapter 5. ISA Summary and Encodings

CHAPTER

SIX

TRUSTED EXECUTION STATE SUB-EXTENSIONS

6.1 Extension ztesmultit: Multi-T support

The Trusted Execution State specification supports an optional extension that allows multiple trusted domains to
co-exist with isolation of memory and peripherals between the domains.

6.1.1 Multi-T Rationale

The primary motivation for this extension is to provide trusted applications with low-latency, efficient access to
highly-secure services, for example, a hardware cryptographic IP and its associated drivers. The secure service
runs within a different trusted domain to that of the client trusted software. The aim is to provide this separation
through functional calls without the need to transition via a higher privilege level involving environment calls and
PMP re-programmings or activations.

The functions that provide the trusted service are assumed to be highly reliable and, in particular, are trusted to
transfer control back to the correct client return address with all Saved Registers correctly restored and the stack
uncorrupted.

6.1.2 Multi-T Specification

Eight separate trusted domains are supported with regions of the address space assigned to a domain using an
additional field in the pmptectl of a PMP entry called the trusted domain id (tdid). There is also an additional
bit to indicate if the content of the region can be shared (sh) with other domains.

ROZ T

4 2 1 0

SHTDID

57

Fig. 1: Multi-T PMPTECTL Entry

Trusted domains operate in isolation from each other with no precedence between them.

A trusted domain can be configured to generate a PMP fault if it attempts execution of any code which has been
shared by another trusted domain (by the setting of pmptectl.sh in that region). This opt-out is enabled for
a specific domain (N) by setting bit N in a new field in tmescr, No shared code (noshx). The purpose is to
minimise how much code it is legal to execute when executing in that domain, further reducing the risk of code
reuse attacks. This option allows software architects to trade off code sharing and security on a domain by domain
basis.

Domain access permissions aresummarized below.

31

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

ROZ eme

15 1

noshx

16XLEN-1 28 0

ROZ

7

ete

Fig. 2: Extended Trusted Machine Execution State (tmescr)

Table 1: Domain access permissions controlled by pmptectl record
pmptectl Domain access permissions when hart . . .
t sh tdid TES=0 TES=1, TDID=N TES=1, TDID!=N
0 0 N RWX RW RW
0 1 N RX RWX RW, X if !noshx[hart.TDID]
1 0 N - RWX -
1 1 N - RWX RW, X if !noshx[hart.TDID]

Sharing of both code and data between trusted domains and between trusted domains and untrusted domains is
possible, for example, a single run time library image can be shared and doesn’t need to be replicated in each
domain. When a region is shared with the untrusted domain (pmptectl.t=0,pmptectl.sh=1) no write
permissions are granted to the untrusted domain.

Reset hardware must initialize the PMP to hold a trusted entry which matches the reset address and has a
pmptectl.tdid=0. At reset, execution always starts in Trusted Domain zero, (TDID=0). During PMP lookup
any entry which has either the pmptectl.t or pmptectl.sh bit set is owned by a trusted domain and match-
ing of that entry is prioritised above any entry owned by the untrusted domain. Note that if the pmptectl.tdid
and pmptectl.sh of all PMP entries are zero then the behaviour matches that of a core without the Multi-T
Extension and the feature is effectively disabled.

The content of the pmptectl can only be modified when operating in trusted m-mode. Domain access checks are
in addition to the RWX permission checks for the region and are applied regardless of privilege level. If domain
and RWX faults occur on the same PMP access, the domain access faults are reported as the higher priority fault.
If a domain violation occurs a PMP fault is generated.

Domain access controls can be modified by any process running in trusted m-mode, provided that the entry has
not been locked.

Entry to a different trusted domain is by calling a trusted entry point allocated in the Trusted Execution State Vector
(TESVEC) table. The current trusted domain id, TDID, is updated to the pmptectl.tdid of the PMP entry for
the entry point specified in the TESVEC Record, TDID=pmp_lookup(TR.ep<<2).pmptectl.tdid.

PC >= tmesvec and
PC < tmestop

Issue instruction
Update PC

Trusted Fetch of
TESVEC Record (TR) at
PCf{PC[31:2],2b’00}

Fetch of TR
at PC faults?

Update PC
PCf{TR.traddr,2b’00}

Take trap:
(t)mepcfPC
(t)mtvalfPC

PCf(t)mtvec

Yes

Enter Trusted Execution
teseps.ctesfTES

TESf1
tmescrfPC|TR.utie

Fetch PC
 using current TES

No

Fetch of PC
faults?

No

Yes

Yes

Instruction was
 jal/jalr with rd=ra

Yes

No

No

Update TDID
teseps.ctdidfTDID
TDIDfpmptectl.tdid

Domain Access
OK? Yes

No

Fig. 3: Updated TES entry flow for multi-t extension

In addition to saving the Caller TES in teseps.ctes, as defined in the Base Specification, an additional field is

32 Chapter 6. Trusted Execution State Sub-Extensions

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

defined in teseps which is updated with the Caller TDID, teseps.ctdid. If the TESVEC was called from
untrusted code then both teseps.ctes and teseps.ctdid are set to zero.

ROZ utie

4 2 0

ctdid

XLEN-1 1

ctes

5

Fig. 4: Multi-T Trusted Execution State Entry Point Status (teseps)

A domain access PMP fault is also generated if code in a shared region (pmptectl.sh=1) attempts a call
through the TESVEC. This eliminates the risk that execution could continue in the domain bound to the TESVEC
entry when the trusted function returns. A domain fault is also generated if TESVEC entry is in a shared region.
The purpose of the sharing mechanism to avoid duplication of common library code, it is not intended for use in
transitioning between domains.

Execution continues in that trusted domain only while executing from regions allocated to that trusted domain
or shared by other trusted domains. During normal execution the only way to leave this trusted domain is by
executing a return, via a ret or tret instruction, to a region owned by the trusted domain specified in teseps.
ctdid. This causes the current trusted domain id to be updated (TDID=teseps.ctdid). If a tret is used
then the current trusted domain is set to teseps.ctdid. If this does not match the trusted domain of the return
address a Domain Fault will be generated.

If the last TESVEC call was from untrusted code, teseps.ctes will be zero and execution of a tret will
force execution to continue in an Untrusted Execution State (TES=0).

The rules for the automatic clearing of registers when transitioning between trusted domains via a ret or tret
are the same as for transitions from TES 1 → 0.

Any other form of jumping or branching to an unshared region owned by any other domain results in a PMP fault.

Any exception or interrupt that is vectored through either tmtvec (or tmtvt if using the CLIC’s vector mode)
causes the trusted domain id of the first instruction of the interrupt handler to be saved to a new field of the
tmstatus, Previous TDID (ptdid). This is in addition to the current TES being saved to tmstatus.ptes.
If the core was in an Untrusted Execution State then the ptdid is set to zero. The TES is then set 1 and the trusted
domain id is set to the domain associated with the trusted handler, TDID=pmp_lookup(irq_handler).
pmptectl.tdid. When an mret occurs the TES is set to the value of tmstatus.ptes and the trusted
domain is set to tmstatus.ptdid. When vectoring through the CLIC’s tmtvt it is possible to associate a
handler with a specific trusted domains just by mapping ot to a PMP region wih the appropriate pmptectl.tdid
setting.

ROZ ROZ

10 4 2

ptdid

27XLEN-1 32426 8 07

mieROZ

6

mpiempp

111223

ptes ROZ

22 13

ROZ

Fig. 5: Extended Trusted Machine Status (tmstatus)

The effect of domains on the trusted state of the machine is summarized in the table below.

6.1. Extension ztesmultit: Multi-T support 33

RISC-V Trusted Execution State Extension, Release 17 Nov 2020
commit:fa79e49a852f86575841beae321f1f65ab6e03b6

Table 2: Summary of Domain Related Transitions
Current trust state PMPTECTL of next PC Next trust state
TES TDID Insn T SH TDID TES TDID Auto-

clear
X - call/ret/mret

TESVEC
1 0 N 1 N -

1 X Instruction access fault
0 X

other TESVEC X
0 - any legal 0 X X 0 - -

1 Instruction access fault
1 N tret ctes 0 ctdid ctes ctdid Yes

!ctdid Instruction access fault
!ctes X

mret ptes ptdid ptes ptdid No
!ptdid Instruction access fault

!ptes X
j/ret 0 X 0 - Yes
other Instruction access fault
ret 1 !N AND ctdid 1 ctdid Yes

!N AND !ctdid Instruction access fault
not tret/mret N 1 N -
not any ret !N Instruction access fault
any legal X 1 N OR

!noshx[N]
1 N -

!N AND
noshx[N]

Instrcution access fault

Note: Implementation: When signaling the trust status of a memory transaction implementations are expected to
provide an additional sideband signal which gives the trusted domain id of the transaction. This allows additional
hardware security checks to be applied when accesses are made to secure IPs. Further details of this signaling are
product/bus protocol specific and outside the scope of this specification.

If a trusted interrupt or exception handler has to access a service in a different trusted domain it should save the
current teseps and tesepr prior to calling the TESVEC and then restore them before restarting the thread.
The same is true if the handler is performing a switch to a different thread.

34 Chapter 6. Trusted Execution State Sub-Extensions

	Rationale and Scope
	Specification
	Leaving trusted execution without changing privilege level
	Entering trusted execution without changing privilege level
	General purpose register management
	Exceptions
	Trusted Interrupts
	Untrusted Interrupts
	Core Level Interrupt Controller (CLIC) support
	Summary of State Transitions
	Trap Vector Locking
	Debug

	Security Assessment
	Use cases/models
	Lightweight secure function calls
	Calling untrusted/insecure code
	Trusted OS with untrusted (sandboxed) and trusted tasks
	Untrusted OS with secure functions and tasks

	ISA Summary and Encodings
	Instruction Summary
	CSR Summary

	Trusted Execution State Sub-Extensions
	Extension ztesmultit: Multi-T support

